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1 User Manual  

1.1 Neural Network 

The purpose of this chapter is to outline how to use the learning software to build a neural 

network, train it and make predictions with it. 

1. Build the Neural Network 

 

Figure 1: Neural network architecture page 

In order to build the neural network, the training dataset must first be selected. This can be 

achieved by selecting the desired dataset from the dataset dropdown. If preconfigured settings 

such as the architecture, the training settings or both are provided by a dataset, the user is 

asked whether he wants to adopt them (as can be seen in Figure 2). If the user clicks yes, the 

supplied architecture will be adopted, otherwise the currently entered architecture will remain.  
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Figure 2: Dialog - accept provided settings  

The information about the dataset, such as the number of input neurons, output neurons, etc. 

can be obtained by clicking on the info button next to the dataset dropdown. The number of 

input and output neurons of the neural network must correspond to the values described in the 

dataset info. Otherwise the transition to the training page is blocked and a message is 

displayed. 

For each layer the number of neurons, the activation function and the bias can be selected. 

Hidden layers can be added via the button "+ Add Hidden Layer". Each hidden layer can be 

removed with the red button "x" at the end of the layer line. The visualization of the neural 

network is updated immediately after each input. 

  

Important: When building a large neural network with many neurons and hidden layers, you may 

notice that it takes a long time to visualize it. To prevent this, disable the visualization by clicking on 

"Visualization". The visualization is then disabled by default on the following pages. However, it can 

be enabled at any time by clicking on "Visualization" again. 

Tip: Most of the time, one hidden layer is sufficient to solve a problem. A good heuristic to choose 

the number of neurons in the hidden layer L is to take the average of the sum of the layer L-1 and 

the L+1 neurons. Example: With 12 input and 2 output neurons, the hidden layer would have 
12 + 2

2
=

7  neurons. 
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2. Train the Neural Network 

After the architecture was successfully built, the user can continue to train the neuronal network 

by pressing the button "Continue to Training”. The selected dataset can again contain 

predefined values for the training. If this is the case, these values are automatically taken over 

if the user has previously accepted to adopt the settings from the dataset. Otherwise, or if the 

dataset has no preconfigured training settings, the values must be selected manually. 

First, an optimizer must be selected. The goal of an optimizer is to minimize the loss function. 

The user can choose between the stochastic gradient descent (SGD), SGD-Momentum, Adam 

and RMSprop optimizer.  

The next step is to select the loss function. The user can choose between the mean squared 

error (MSE) and the Softmax cross entropy. The MSE is mostly used for regressions and cross 

entropy for classifications.  

Now, depending on the chosen optimizer, the optimizer settings learning rate and momentum 

must be set. The learning rate allows the user to specify what percentage of the weight change 

the learning process should adopt. For example, if a learning rate of 0.2 is specified and the 

weight change is 0.4, the actual weight change will be 0.08. If the learning rate is too high, the 

minimum of the loss function will be overshot. If the learning rate is too low, the training will 

take extremely long or will get stuck. Momentum, which can be set with the RMSprop and 

SGD-Momentum optimizer, specifies how much of the previous weight change is added to the 

current weight change. This helps to accelerate the learning and improves the accuracy as it 

gives a bias for the direction of the gradient. 

After the optimizer settings, the abort conditions must be set. The number of maximum 

iterations indicates how many training iterations will be performed before the training is 

aborted. The minimum error indicates the error value at which the neural network should stop 

the training. 

Now the training can be started by clicking on the "Train" button. The error is now displayed 

in real time per iteration in the line diagram (see Figure 3). The "Reset Network" button 

Tip: Usually a learning rate between 0 and 1 is selected. The momentum can initially be set to 

0.9. For the adaptive learning rate optimizers or if a momentum has been specified, rather small 

learning rates between 0.01 and 0.2 should be chosen.  

 

Tip: Do not forget to adjust the minimum error when changing the loss function, as it is calculated 

differently. 
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distributes new initial weights to the network. This should be done especially if the training 

was not successful. 

After training, the button "Continue without Training" has changed to "Continue to 

Computation". Clicking this button displays the calculation page. 

 

Figure 3: Training page after training 

 
 
3. Make Predictions with the Trained Neural Network 
 
Depending on the dataset a validation set is supplied. Manual entries can also be made either 

via a drawing grid (if the dataset supports it) or via text fields. The preferred dataset can be 

selected via the dropdown. After selecting the dataset, the user can click on the "Compute" 

button to make a prediction for the whole dataset. Figure 4 shows the output console displaying 

the accuracy and calculation results of each item in the dataset: 

 

Tip: The weights can be inspected before training (initial weights) and after training by moving the 

mouse over the connections in the visualization. 

Tip: When changing the optimizer or loss, do not forget to reset the network if it is already trained. 

If the training was not successful, it was probably caused by a wrong architecture or wrong training 

settings. 
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Figure 4: Computation page computing a validation set 

For accuracy calculations, the number of correctly classified elements is divided by the number 

of all classified elements. An element is considered as correctly classified if the index of the 

output neuron with the highest value corresponds to the index of the is-class in the label. For 

regressions, the mean squared error is calculated. 

The input vector can be selected in order to display it in the drawing grid (as can be seen in 

Figure 5). 

 

Figure 5: Visualization of an input vector 

The mode can be switched to "Fill Inputs manually" to draw and classify own drawn elements. 

The desired element can be drawn by clicking on the individual cells in the drawing grid. The 

next step is to press the "Calculate" button. The result is displayed as text below the button 

and in a visualized form. In the visualization of the neural network the input values and the 
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output values can be seen. The neuron with the highest output value is marked red (it fires the 

most) and thus represents the predicted class. Since the first neuron represents class 0 and 

the last neurons class 9, the drawn number was correctly predicted as 8. 

 

Figure 6: Predict a class with manual input 
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1.2 Playground 

The playground demonstrates the relationship between the various settings of a NN (e.g. 

activation function, weights, input values and bias) and the resulting output value. Changes 

are immediately displayed in the visualization of the NN. 

 

Figure 7: Playground 

When the binary step function is selected, an additional line is displayed in which the weights 

can be automatically adjusted to solve the OR problem. In order to run the algorithm, a learning 

rate between 0 and 1 must be specified and the button "Perform one Training Epoch ('OR'-

Problem)" must be clicked. After each epoch, the weights will be adjusted automatically. 

Depending on the selected initial weights and learning rate, fewer or more epochs are 

necessary. As soon as the weights are no longer adjusted by the algorithm, the weights are 

optimized so that the perceptron is able to solve the OR problem. 

1.3 Datasets 

In the dataset editor, existing datasets can be viewed or new ones can be created. Existing 

datasets can be selected via the dataset dropdown. A new dataset can be created by selecting 

“Create new Dataset” in the dropdown.  

When creating a dataset, a unique name and publication type must first be chosen. With 

"public" the dataset is available to all users, with "private" only to the creator as long as he is 

logged in.  Now the dataset can be created in JSON-format using the JSON-editor, whereby 

the following attributes exist: 
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• description: (String) A description of your dataset.  

• isValidationset:(Boolean) Specifies whether the dataset may only be used for 

validation purposes and not for training purposes. 

• problemType: (String) Choose between "classification" and 

"regression". 

• items: Represents an array of items with the following attributes: 

o data: (Float array) Represents the data of the item. 

o labels: (Float array) Represents the result for the entry (for classification 

use one-hot encoding). 

• matrix (optional): (Int array with length 2) The first entry specifies 

the number of rows and the second entry the number of columns of the drawing matrix. 

As soon as a matrix is defined, the "Vector Helper" is displayed at the bottom. With the 

"Vector Helper" the input vectors can be created using the drawing grid. 

• outputDescription (optional, for classifications only): (String 

array) Represents a description for each output neuron. For two output neurons 

where the first one represents false and the second one true, you would enter the 

following:  

"outputDescription": [ 

    "False", 

    "True" 

  ] 

 

• layers (optional): A predefined architecture for the neural network can be 

provided here. It represents a layer array where the first entry is the input and the last 

entry is the output layer.  For the input layer only the number of neurons has to be 

specified, for the other layers the number of neurons, the activation function and the 

bias have to be defined. A layer has the following attributes: 

o neurons: (Int) Number of neurons 

o activation: (String) Choose between "relu", "tanh", "sigmoid" 

and "softmax". 

o bias: (Boolean) 

• trainingSettings (optional): Predefined settings for the training can be made 

here with the help of the following attributes:  

o optimizer: (String) Choose between "sgd" (stochastic gradient 

descent), "sgdm" (stochastic gradient descent with momentum), "adam" or 

"rmsprop". 
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o loss: (String) Choose between "mse" (mean squared error) and "sce" 

(softmax cross entropy). 

o learningRate: (Float) Learning rate 

o momentum: (Float) Momentum (only with optimizers RMSprop and SGDM) 

o maxIterations: (Int) Maximum iterations before the training is aborted. 

o minError: (Float) When this error value is reached, the training stops. 

After all values have been defined, press the save button. The dataset should now be saved 

and visible in the dataset list if all values have been correctly defined. If a value has not been 

configured correctly, an error message will be displayed. 
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2 Datasets 

All datasets provided in the learning software have a predefined architecture and well operating 

training settings. The following datasets are included in the learning software: 

OR 

The OR-problem represents a linear problem and can therefore be solved with an SLP.  

XOR 

The XOR-problem represents a non-linear problem and therefore an MLP is required to solve 

it.  

Dice 

The dice dataset represents the six eyes of a dice. It can be used together with the drawing 

grid to draw the eyes of the dice. 

Numbers 

The numbers dataset represents the numbers from 0 to 9. It can be used together with the 

drawing grid to draw different numbers. This dataset is complex to train because different 

spellings were used and the distribution of the numbers is uneven. For example, there are 

more different spellings for the number 1 than for the number 8. In order to evaluate the NN, a 

validation set has been provided. If the accuracy for the validation set is not sufficient (e.g. < 

100%), it is recommended to go back to the training page, reset the network (new initial weights 

are distributed), adjust the parameters when necessary and to train the NN anew. 

Letters 

The letters dataset contains all letters from A to Z. It can be used together with the drawing 

grid to draw different letters. This dataset still has a lot of potential, because many more 

variations of letters can be added. A validation set is also available for this dataset, but due to 

the few variations of the letter spellings in the training set it is almost impossible to achieve 

100% accuracy on the validation set. 
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3 Implemented Elements 

In this chapter the implemented elements of the learning software will be introduced. 

3.1 Optimizers 

There are various optimization algorithms that can be used in order to minimize the error/loss 

function (Walia, 2017b). The following optimizers are implemented in the learning software: 

Stochastic Gradient Descent 

The following paragraph is based on Bergen, Chavez, Ioannidis and Schmit (2015, pp. 1-2). 

Stochastic gradient descent (SGD) is a popular optimization method in machine learning. The 

method is based on the idea that at each iteration a data element is selected randomly and 

that the gradient of the entire dataset can be estimated due to this element. The advantage of 

this approach is that it is not necessary to go through the entire dataset in order to calculate 

the gradient. However, this method needs more iterations to converge, since the training is 

very noisy due to the estimation. 

Parameter: Learning rate (required) 

Stochastic Gradient Descent with Momentum (SGDM) 

Momentum adds a fraction of the past weight change to the current weight change and 

therefore helps SGD to find the right direction towards a minimum (Ruder, 2016, p.4). Bushaev 

(2017) claims that this technique can lead to a better estimation of the actual gradient than the 

classic SGD without momentum.  

Parameters: Learning rate (required) and momentum (required) 

Adaptive Learning Rate Optimizers (RMSprop and Adam) 

The following paragraph is based on Moreira and Fiesler (1995, pp. 1-3). 

With SGD and SGDM, the learning rate defined at the beginning always remains the same. 

However, it has been shown that an appropriate adjustment of the learning rate during training 

has a positive impact on the result. In the area close to the minimum it is desirable to have a 

small learning rate. If the minimum is further away, a larger learning rate is better to accelerate 

the training. Another advantage of adaptive learning rate optimizer is that the trial-and-error 

search for the optimal parameters can be avoided (Moreira & Fiesler, 1995). For these 

reasons, in addition to the static learning rate optimizers, two adaptive learning rate optimizers 

have been added: 

Adam 

Parameter: Initial learning rate (optional) 
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RMSprop 

Parameters: Initial learning rate (required), momentum (optional) 

Ruder (2016) claims that Adam and RMSprop are very similar. However, he also mentions 

Kingma and Ba (2015, pp. 5-8) who show some important differences between the two, 

resulting in Adam outperforming RMSprop in the tests they performed. Nevertheless, both 

optimization methods were added in order to make a direct comparison possible. 

3.2 Losses 

A loss function measures how well a neural network performs. The goal of training a neural 

network is to minimize the loss function (Sosnovshchenko, 2018; Walia, 2017b). Two loss 

functions covering regression and classification tasks were implemented in the learning 

software: 

Mean Squared Error 

The mean squared error (MSE) is a popular loss function for regression problems (Grover, 

2018; Sosnovshchenko, 2018). It measures the quality of an estimator by calculating the 

average squared distances between the estimated points ỹ and actual points 𝑦 (Zheng, 2013): 

𝑀𝑆𝐸 =  
1

𝑛
∑( ỹ𝑖 −  𝑦𝑖)2

𝑛

𝑖

 

n: Number of all estimates 
i: Index of current estimate 
 
Softmax Cross Entropy 

The following paragraph is based on Gomez (2018): 

Softmax Cross Entropy (SCE), also known as categorical cross entropy (CCE), is used for 

multi-class classification problems. The label vector of an element must be one-hot encoded, 

which means that only one class in the vector can be active (Gomez, 2018).  

The CCE is defined in the equation below, where y is the label vector, ỹ is the output vector 

for the element to be classified and n represents the length of both vectors, respectively the 

number of classes (Sosnovshchenko, 2018): 

𝐶𝐶𝐸 =  − ∑ 𝑦𝑖 ∗ log (ỹ𝑖)

𝑛

𝑖
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Example: 

If a dataset with pictures of dogs, cats and horses is present, the one-hot encoded label vector 

has a length of 3, because it must represent three classes [dog, cat, horse]. When training the 

neural network, a data element which represents a cat is pulled and therefore has the following 

label vector [0, 1, 0]. The untrained neural network gives us the output vector [0.2, 0.3, 0.5] 

which expresses the predicted probability of each class for the given data element. Now the 

CCE can be calculated: 

𝐶𝐶𝐸 = −(0 ∗  𝑙𝑜𝑔𝑒(0.2) + 1 ∗ 𝑙𝑜𝑔𝑒(0.3) +  0 ∗  𝑙𝑜𝑔𝑒(0.5)) 

𝐶𝐶𝐸 = −(1 ∗  𝑙𝑜𝑔𝑒(0.3)) 

𝐶𝐶𝐸 = 1.2033 

As the prediction gets better, the CCE gets smaller and is therefore suitable to calculate the 

loss of a classifier: 

𝐶𝐶𝐸 = −(0 ∗  𝑙𝑜𝑔𝑒(0.005) + 1 ∗  𝑙𝑜𝑔𝑒(0.99) +  0 ∗  𝑙𝑜𝑔𝑒(0.005)) 

𝐶𝐶𝐸 = −(1 ∗  𝑙𝑜𝑔𝑒(0.99)) 

𝐶𝐶𝐸 = 0.01 

3.3 Activation Functions 

An activation function calculates the output signal of the neuron based on the aggregated input 

signals (Tadeusiewicz et al., 2015, S.36). The output indicates if a neuron has fired or not 

(Nwankpa, Ijomah, Gachagan, & Marshall, 2018, S.3). Non-linear activation functions bring 

non-linear properties to an MLP (Nwankpa et. al., 2018, S.4; Walia, 2017a). According to Walia 

(2017a), Sigmoid, Tanh and ReLU are the most popular activation functions. In order to 

calculate the probability for multiclass problems, the Softmax activation function has been 

added. The linear and the binary step function were added at the request of the client. 

Binary Step 

The following explanation of the binary step function is based on Serengil (2017). 

This activation function is called binary step function because it returns binary values, i.e. 0 or 

1 (see Figure 8). It is mostly used in single layer perceptrons which can only classify linear 

problems. The problem with the binary step function is that in real world applications the 

backpropagation algorithm is used which requires differentiable activation functions. However, 

the derivative of the binary step function is zero and therefore the backpropagation algorithm 

cannot update the weights because any number multiplied by zero is always zero. For this 
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reason, the binary step function can only be found in the playground and not in the neural 

network part of the learning software. 

The binary step function is defined as follows: 

𝑓(𝑥) =  {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 

 

Figure 8: Binary Step Function 

Linear 

As can be seen in Figure 9, the output of the implemented linear activation function is the same 

as its input. Linear activation functions do not bring non-linear properties to an MLP. This 

means that e.g. the XOR-problem could not be solved by an MLP if only linear activation 

functions were used. 

𝒇(𝒙) = 𝒙 

 

Figure 9: Linear function 

Sigmoid 

The following paragraph is based on Nwankpa et. al. (2018, p.5). 

The Sigmoid function, also known as logistic function, outputs a value in the range from 0 to 1 

and can therefore be used in the output layer of a NN to produce probability-based outputs. It 

is mostly used in binary classification problems whereas the Softmax activation function is 

used for multi-class classification problems. 
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Tangens Hyperbolicus (Tanh) 

The Tanh function returns a value in the range from -1 to 1. LeCun, Bottou, Orr and Müller 

(1998, p.18) state that Tanh often converges faster than Sigmoid. 

 

Figure 10: Sigmoid and Tanh functions (Nwankpa et. al., 2018, p. 7) 

Rectified Linear Unit (ReLU) 

The following paragraph is based on Nwankpa et. al. (2018, pp. 5-9). 

ReLU is a popular activation function for deep neural networks. The advantage of ReLU over 

Sigmoid and Tanh is that ReLU does not have the problem of vanishing gradient when training 

deep networks. The problem with Sigmoid and Tanh is that the inputs are squeezed into a very 

narrow range between 0 and 1 and -1 and 1 respectively. Consequently, the derivation of the 

function is very small in certain places. When now training the NN using backpropagation, the 

following problem arises: «With successive multiplication of this derivative terms, the value 

becomes smaller and smaller and tends to zero, thus the gradient vanishes» (Nwankpa et. al., 

2018, p. 5). Therefore, ReLU should be used in hidden layers of deep networks. 

ReLU is a nearly linear function 𝑓(𝑥) which is defined as follows: 

𝑓(𝑥) =  {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 

 

Figure 11: ReLU (Walia, 2017a) 
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Softmax 

The following paragraph is based on Nwankpa et. al. (2018, p.8). 

The Softmax activation function outputs the probability for each given class in a vector. This 

means that each class is assigned with a value between 0 and 1 so that the sum of all classes 

in the output vector adds up to 1. Therefore, this activation function should be selected for the 

output layer when solving a multi-class classification problem. 

3.4 Bias 

When configuring each layer of a NN a bias can be selected in addition to the previously 

mentioned number of neurons and activation function. Solely for the input layer a bias is not 

set as its value would be overwritten by the input values. The bias always has a constant 

output, usually 1. The bias is fully connected to its associated layer and causes the activation 

function to move to the left or right (as can be seen in Figure 12), while the weights affect the 

slope of the activation function (Collis, 2017): 

 

Figure 12: Influence of bias on the activation function (Collis, 2017) 
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List of Abbreviations 

Abbreviation Meaning 

CCE   Categorical cross entropy 

MLP Multy-layer perceptron 

MSE Mean squared error 

NN Neural network 

SCE Softmax cross entropy 

SLP Single-layer perceptron 
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